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Connection between matrix-product states and superposition of Bernoulli shock measures
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We consider a generalized coagulation-decoagulation system on a one-dimensional discrete lattice with
reflecting boundaries. It is known that a Bernoulli shock measure with two shock fronts might have a simple
random-walk dynamics, provided that some constraints on the microscopic reaction rates of this system are
fulfilled. Under these constraints the steady state of the system can be written as a linear superposition of such
shock measures. We show that the coefficients of this expansion can be calculated using the finite-dimensional
representation of the quadratic algebra of the system obtained from a matrix-product approach.
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I. INTRODUCTION

It is known that the time evolution of a product shock
measure in some of the one-dimensional driven-diffusive
systems is similar to that of a random walker, provided that
the microscopic reaction rates of the system lie on a certain
manifold [1-7]. These systems can be defined both on infi-
nite lattices or finite lattices with boundaries. For each of
these systems one can define a microscopic shock position
and calculate the exact hopping rates of the traveling wave in
terms of the transition rates of the microscopic model. The
existence of such processes implies a rather remarkable prop-
erty. Shocks behave like collective single-particle excitations
on the lattice scale which results in reduction of the expo-
nentially large number of microscopic internal degrees of
freedom to an only polynomially large number of macro-
scopically relevant degrees of freedom. Since the shock po-
sition moves like a biased single-particle random walk, the
shock measure evolves in time into a linear combination of
shock measures; therefore, a linear combination of shock
measures may be a stationary measure.

The stationary measure of some of the one-dimensional
driven-diffusive systems can also be obtained using a matrix-
product approach (for a review see [8]). According to this
approach the stationary probability of a given configuration
is written in terms of the expectation value of a product of
noncommuting operators associated with different states of
each lattice site. In the case of nearest-neighbor interactions
these operators should satisfy a quadratic algebra. The matrix
representations of some of these quadratic algebras have al-
ready been studied in different cases (see [8], and references
therein).

Since the steady states of these systems are unique, one
can ask about the relation between these two approaches. It
has been shown that if the steady state of a system with
nearest-neighbor interactions can be written in terms of su-
perposition of product shock measures with a single shock
front, then a two-dimensional representation of the quadratic
algebra would be enough to write the steady state of the
system as a matrix-product state [3]. In this case, the condi-
tions under which a product shock measure with a single
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shock front has random-walk dynamics are exactly those for
the existence of a two-dimensional matrix representation of
the quadratic algebra. A couple of examples have already
been studied in [3].

In a recent paper [9] the authors have studied a general-
ized nonconservative reaction-diffusion system defined on a
finite lattice with reflecting boundaries with the following
nonzero reaction rates:

D+A—A+@D with rate ws,,
A+QD — D+A with rate w,3,
A+A—A+@ with rate wy,
A+A— D+A with rate wyy,
D+A—A+A with rate wy,,
A+D —A+A with rate w3, (1)

in which A and @ stand for the presence of a particle and a
hole in each lattice site, respectively. Note that there is no
injection or extraction from the boundaries. It has been
shown that the steady state of this system can be written as a
matrix-product state under some constraints [9]. The qua-
dratic algebra of the system has a four-dimensional represen-
tation in this case. The time evolution of a product shock
measure with two shock fronts has also been studied for this
model. It has been shown that the shock positions in this
measure have simple random-walk dynamics provided that
the same conditions for the existence of the four-dimensional
matrix representation for the quadratic algebra of the system
are fulfilled by the microscopic reaction rates [9]. In other
words these shock distributions form an invariant sector un-
der the time evolution of the system, i.e., a shock measure
evolves into a linear combination of shock measures with
different shock positions. In this case one can write the
steady state of the system as a linear superposition of shocks;
however, this has not been shown yet. The complete phase
diagram of this system has also been studied. It has been
found that it has two different phases depending on the hop-
ping rates of the shock positions.
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In this paper we aim to study the steady state of the ex-
actly solvable system defined in (1) using a different ap-
proach than the matrix-product approach. We will show that
the steady state of the system can be expanded in terms of
product shock measures with two shock fronts. We will spe-
cifically show that the coefficients of the expansion can be
uniquely calculated using the four-dimensional matrix repre-
sentation of the quadratic algebra introduced in [9]. In the
following we will start with the mathematical preliminaries
and bring the time evolution equations for a product shock
measure with two shock fronts generated by the Hamiltonian
of the system. By considering a linear superposition of such
shock measures we construct the steady state of the system
and then calculate the coefficients of this expansion. We will
provide the summary and discussion at the end of the paper.

II. TEMPORAL EVOLUTION OF SHOCKS

The microscopic state of a one-dimensional reaction-
diffusion system may be described by a set of occupation
numbers {n;,...,n;} where n;,=0,1 is the number of par-
ticles on site k on a lattice of L sites. The time evolution of
the distribution P({n,,...,n.};t) in this system is defined by
a continuous-time master equation which can be written in
terms of the quantum Hamiltonian formalism. The stochastic
Hamiltonian H, whose matrix elements are the transition
rates between configurations, generates the time evolution.
The Markovian time evolution can be written in the form of
an imaginary time Schrodinger equation

<[P0y = HIPG). )

For a single-species system with nearest-neighbor interac-
tions defined on a one-dimensional lattice of length L with
reflecting boundaries, the Hamiltonian H is of the following
form:

-1
H=2, P ks (3)
k=1
in which

hk,k+1 =I®(k_1) ® h ® I®(L_k_l),

where 7 is a 2 X2 identity matrix and £ is a 4 X4 matrix
representing the bulk interactions. In the basis (00, 01, 10,
11) with the following basis vectors:

) )
lny=1)= 1) In=0)= 0 (4)

for
k=1,...,L

the Hamiltonian / for the system defined by (1) can be writ-
ten as
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0 0 0 0

h= 0 —wp-wp w23 W4 .5
0 w3 — W3~ Wy3 w34
0 Wy Wy3 — W34~ Wy

In [9] the authors have shown that a product shock measure
with two shock fronts defined as

» _<l)®m <l_p>®n—m—l (1>®L—n+l .
| m,n>_ O ® p ® O ()

for 0=<m=n-1 and 1 =n<L+1 might evolve according to
two-particle random-walk dynamics provided that
1 - p "—

p Wt W43 W43 Wy

Wyt @34 W3 W (7)

Note that in (6) two auxiliary sites 0 and L+ 1 are defined for
convenience. The time evolution of the product shock mea-
sure (6) is obtained to be

H|Pm,n> = 5lr|Pm+l,n> + 511|Pm—l,n> + 52r|Pm,n+l>
+ 8| Pype1) = (81, % 81+ 8+ 83)| Py )

for

n=m+?2,...,L,

H|Py,) == 8P\, + 8, Poe1) + O Pot)
- (_ 3+ 52r+ 521)|P0,n>

for

H|Pm,L+l>: 51r|Pm+1,L+1>+ 511|Pm—1,L+1> + 51Pm,L>

— (81, + 81+ O)|Ppri1)

for

H|PO,L+1> =- apl,uﬁ + aPO,D,
I—I|Pm,m+l>=O (8)

for
m=0,...,L,

in which we have defined
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(1-p)°
Oy = wyy + w3p,
8, = L4
p
- O+ 6
5= &y= 25, )
011+ 6y,

As can be seen in the bulk of the lattice the shock positions
move like two biased lattice random walks; therefore, pro-
vided that we are far from the boundaries, the velocity, and
also the diffusion coefficient of each shock front, can be
easily calculated from (8). The hopping rates of the left
(right) shock front are &,,,8;; (8,,,8y). The velocity of an
individual shock front is then v;=J;,— J; for i=1,2 and also
the diffusion coefficient is D;=(&;,+ &;)/2 for i=1,2.

III. STEADY STATE OF THE SYSTEM

The last equation in (8) implies that an empty lattice is a
trivial steady state for the system; however, one can con-
struct a nontrivial steady state by considering a linear super-
position of |P,,m>’s as follows:

1 L L+1
P=—2 2 il P (10)

L m=0 n=m+1
and find the coefficients ¢, ,’s by requiring that
H|P*y=0. (11)

The probability of finding the system in the configuration
{n;,...,n.} is now given by

P*({ny, ....n )= (| ® - @ (m)[P)  (12)

in which |n;) for k=1, ... L is defined in (4). Note that there
are L+1 states |Pk,k+1>’s for k=0, ...,L which all point to an
empty lattice and should be considered as a single state. The
coefficient of this state in (10) will be called ¢'.

It is a lengthy exercise, but nevertheless straightforward
to find the equations governing ¢, ,,’s using (8), (10), and
(11). Tt turns out that these coefficients should satisfy a set of
15 equations which are given in the Appendix. In order to
find the nontrivial steady state of the system one should
solve these equations and calculate the coefficients #,,,’s.
These equations have already been solved in [4] for the fol-
lowing special tuning of the parameters:

— — 1 — —
Wy =wy=4q , Wy=wp=(g,

wp=Ag, wz=Ag'. (13)

In this paper we are not going to solve these equations di-
rectly, but instead, we will find their solutions using the re-
sults obtained from the matrix-product approach.

The nontrivial steady state of the system has already been
obtained using the matrix-product approach [9]. Let us as-
sign the two operators D and E to the existence of a particle
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and a vacancy at each lattice site, respectively. According to
this approach the normalized matrix-product steady state is
given by

1 (E )@L
P*)=—(W 14
Py= il | 1) (14
in which Z, =((W|(D+E)!|V}). In contrast to [9], here we use
a different notation for the two vectors |V)) and ((W| to em-
phasize that the vectors in the configuration space denoted by
|-y are different from these two vectors which exist in an
auxiliary space. Using (12) the probability of finding the sys-
tem in the configuration {n,,...,n;} is now given by

L
LWL (D + (1 = E)|VY).

P*({nl, .. 7
L k=1

. 7”L}) =

In [9] the authors have found that the two operators D and E
besides the two vectors |V)) and ((W| have a four-
dimensional matrix representation provided that the con-
straints (7) are satisfied. Because of uniqueness of the steady
state of the system, the expression (10) should be equal to
the expression (14). This will help us calculate the coeffi-
cients i, ,’s. It can easily be checked that the results ob-
tained in this way satisfy the equations governing i, ,,’s.

IV. EQUIVALENCE OF TWO DIFFERENT
APPROACHES

Let us define a different measure

1 ®@m 0 ®@n-m—1 1 ®L-n+1
Pa={1-p| |1 ®|1-p
-p p -p
(15)

for0O=sm=n-1 and 1 =n<L+1 which is orthogonal to the
product shock measure (6) according to the following rule:

<Pm’,n’|Pm,n> = 67

m,m

1Syt (16)
Using this different measure and (10) one finds

dlm,n = ZL<ﬁm,n|P*> (17)

forO=m=n-1 and 1 <n=<L+1 which uniquely determines
the coefficients i, ,’s. Since the two steady states obtained
from the superposition of the product measures and the one
obtained from the matrix-product approach should be equal,
one finds from (14), (15), and (17),

m n—-m-— —n+1
ez/m,n=<<vv|(E——1 e ) (11)) 1<E——1 ‘%)L )
p p p

for

Osms<L-1,

m+2<n<L+1,
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_ L
W =<<W|<E— 1—p”D) V). (18)

If there exists a matrix representation for the quadratic alge-

bra of the system, one can calculate the coefficients #,,,’s

using (18), and it means that the matrix-product steady state

of the system can actually be expanded in terms of a linear
31y + 8)

)
15,8, 8udy
lr//m,n - 5,
( 0110 — 51r52r> L+l
8(6),+ 65,)

5
Sy

|

for

I
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superposition of product shock measures with two shock
fronts.

Using the diagonal four-dimensional matrix representa-
tion of the quadratic algebra of the system, first introduced in
[9], we have calculated the coefficients ¢, ,’s. It turns out
that these unnormalized coefficients are given by the follow-
ing expression:

01+ Oy
o1+ 6,

O1,+ Oy
O+ 6,

@
6y

MGG

OsmsL-1,

m+2=n<L+1,

(8 + 6y (8 + d1,)p

1 5lr62r

Oy

W = po16i, (
(61, + 65,)

1
- [0 = &,(1 - P)z]

I

511621 - 5lr62r

|

- o1 - P)z][521—

in which p=1-(8;,+8,))/(8;;+6,,). These coefficients are
functions of the four parameters &,,, 8, &,, and &,; as one
should expect. As we mentioned it can be easily verified that
n’s besides ' in (19) satisfy the equations (A1). Note that
in order to calculate the coefficient ¢ in (19) one should also
include the fact that an empty lattice (the trivial steady state)
should be excluded by applying the constraint
P*({0, ...,0}) < ({(W|E*|V))=0. One can also check that for
the special tuning of the parameters given in (13), the unnor-
malized coefficients (19) reduce to the ones calculated in [4]
(up to a multiplicative constant).

As we mentioned the system has two different phases
which are separated by a coexistence line. On this coexist-
ence line, where one of the shock fronts performs an unbi-
ased random walk, the matrix representation of the quadratic
algebra cannot be diagonalized and one should use a nondi-
agonal matrix representation. It can be easily shown that
even in this case one can calculate #,,,,’s and ¢’ using (18)
and the nondiagonal matrix representation of the quadratic
algebra introduced in [9].

V. CONCLUSION

In this paper we have studied the steady state of a gener-
alized coagulation-decoagulation system defined on a finite
lattice with reflecting boundaries. The steady state of this
system has already been found using a matrix-product ap-

(See)

(19)

L
2 ( _p)z) - 2
o, (1 - P) ] Sy [51r— 511(1 —P) ] 6110y

proach; however, in this paper we have shown that the steady
state of the system can equivalently be constructed by con-
sidering a linear superposition of product shock measures
with two shock fronts. The key point is that the conditions
under which the shock fronts have simple random-walk dy-
namics are exactly those necessary for the existence of a
four-dimensional representation for the quadratic algebra of
the system. This is quite nontrivial since it has not been
generally shown that the existence of a finite-dimensional
matrix representation for the quadratic algebra of a given
system is an indication that the steady state of the system can
be written as a superposition of Bernoulli shock measures.
The results of the study of this exactly solvable system be-
sides those obtained in [3] might bring us to this conclusion:
That the existence of a finite-dimensional matrix representa-
tion for the algebra of a one-dimensional reaction-diffusion
system is a signal that the steady state of the system can be
written as a superposition of product shock measures; never-
theless, the proof still remains as an open problem.

APPENDIX: EQUATIONS GOVERNING ,, ,

As we mentioned, the nontrivial steady state of the system
can be written as a linear superposition of Bernoulli shock
measures with two shock fronts of type (6). By requiring that
(10) is the steady state of the system and using (8), (10), and

041108-4



CONNECTION BETWEEN MATRIX-PRODUCT STATES AND...

(I11) one finds that the coefficients of this expansion should
satisfy the following difference equations:

L-2
(S_ é\ZI)IAO,Z - (5lr+ 521)2 ¢m,m+2 - (5"' 51r)¢L—l,L+l =0,

m=1
[6= (8 + &) ]2 + Suthy3=0,

S thopr + (8= (8, + &) 1o+ St nsr + S1th1,, =0

for
n+2,L,
3l/’o,L+1 + 01+ [6- (8, + &) oo+ S =0,
S thor+ Ouhr 141 =0,
8o+ (81, + 81+ Oyt o)t 3 — Sothy 4 =0,

S%,n = O ot + (81,4 S+ 8o+ 83) U = Syt
- 5111//2,:1 =0

for

n+3,L,

3('7//O,L_ ‘/fl,L+1) = &ty o + (81, + O+ 6, + 521)¢1,L
= Oy =0,

8o a1+ (8+ 81+ 1) 141 — Sty a1 — Sa, 1 L =0,

S\t a1 — (5+ 01+ 01) U 141 + Ottt L1 + S0ty =0
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for

m#1,L-1,
S1rii—apa1 — (C_s+ O+ 01) -1 141 =0,

i1+ O1 1+ Sty 1 = (S1p+ 81+ Sopt o) s
+ 61 1. =0

for

m#*0,1,L-1,L-2,

S 1+ 81,30 — (81,4 81+ Oo+ S0, =0,
O1rthmrn= (81, O11+ Oap+ 82) Y+ oty s =0
for
m+#*0,1,L-2,L—-1,
n=m+?2,

5lrl/lm—l,n + 52r'7[/m,n—1 - (5]r+ 5[1 + 52r+ 521) 'r//m,n + 521¢m,n+1
+ 5ll¢m+l,n=0 (A])
for
m#*0,1,L-1,
nFm+2,LLL+1.

Note that & is related to the shock hopping rates through the
last relation in (9).
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